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SUMMARY

The problem of determining valuvues of structural damp-
ing for use in flutter calculations-ig discussed. The.
concept of equivalent viscous dampling is reviewed and its
relation to the structural damping coefficlent & intro-
duced in ¥.A.C0.A. Technical Report No. 685 is shown. The
theory of normal modes 1s reviewed and a number of methods
are described for separatineg the motlons assoclated wlith-
different modes. Equations are develoved for use in eval-
uating the damping parameters Ffrom experimental data.

Experimental results of measurements of damping in
several flutter models are presented. . :

INTRODUGTION

.

One important step in the situdy of the flutter prop-
erties of an alrplane gtructure is the determination of
the struetural damping. - In an investigation of flutter
.carried out in the N.A.G.A. 8-foot high—~speed tunnel, it
was- desirable to determine the damping in the models test-—
ed. The present report 1s a description of the methods
used, together with a review and & critical discussion of
the principles and:the derivations psrtaining to the msas-—~
urement of damping Darametersv

The presence of dampling in a gtructure can be in-
ferred from and its amount can be megsured by a number of.
different effects.. The principal effects that depend upon
damping are: : ' : o

(1) The rate of decay of free vibrations.

(2) The amplitudes produced by given applied forces
at a resonant frequency.
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(3) The heat produced by vibration.
(4) The elastic hysteresis loop.

A complete physical theory would have to account for:
all the observed results in all the preceding effects, For
the purpose of flutter calculations, howsver, a complete
physical theory is unnecessary. For example, the exact
shape of the hysteresis loop may be unacdcdunted for. It is
sufficient to express the damping in terms of certain ef-
fective parameters that can be conveniently incorporated
into the flutter analysis. The present report reviews
some of the results of—owther investigators on the physical
laws of damping but makes no attempt to find the true law
of damping in the flutter models.:

The results of damblng experiments are often expressed
in terms of the loss of energy per cycle diring vibration.
This energy can be considered as consisting of two parts:
the part that is independent of fregquency and the part .
that depends on frequency. The independent part has been
termed "statical hysteresis"; the dependsent part, “"hered-
itary hysteresis." The results of numerous investigations
indicate that, for most solidg, the statical hysteresis
accounts for practically all of the internal damping. TFor
example, Kimball and Lovell (reference 1) found that, in
various metals, rubber, glass, celluloid, and maple wood,
the loss of energy per cycle was independent of freguency
and could be represented with sufficient accuracy for most
vpurposeg by a constant times the square of the stress am-
plitude, Keulegan (reference 2) found that the loss of
energy per cycle in Armco iron was the sane whéether deterw
mined from a static-hysteresis test. or from the rate of
decay of vibrations. Other investigators (references 3, 4,
and 5) have likewise found the loss per cycle to be inde~
pendent of the frequency. -

Although the damping of materials is conveniently ez— .
pressed in terms of the loss. of energy per cycle, it is
difficult to write an analytical equation of motion that
will represent the observed damping properties. Nearly
all of the published.analytical treatments express the
damping as a force proportional to the véIocity. The con-
stant of proportionality is thus a measurd of the equiva-
lent viscous damping., This constant may then be regrad-
ed as a function of amplitude and frequency. The use of
the analysls of viscous damping for cases of other types
of damping is based upon the approximation of assuming
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that the hysteresis loop can be replaced by an ellipse
having the same amplitude and the.same area as the actual
loop. The damping coefficient determining this equiva-
lent elllipse is then used to express the ressults of exper-
iments. Von Schlippe (reference 6) has applicd this meth-
0d to the annlysis of internal damping.

Another analytical method of describing internsl danmp-
- ing has been used in reference 7. If the displacement is
repregented by a complex variable, a damping force propor-
tional to amplitude dbut independent of fregquency can be.
represented by a complex stiffness cons¥ant. If this com-
Plex stiffness is written in the form k(1 + ig), +then g
is 2 nondimensional damping coefficient. In the following
analysis, the relation of the coefficlent & %o the vis-
cous damping coefficiont is shown and the principal formu-~
las for use in evaluating these coefficients from actual
data are derived.

The basis of the analysis of vibrations in continuous
structures is the theory of normal modes. 4 normal mode
means a type of vibration in which each particle of a struc-—
ture vibrates in simple harmonic motion with the same
frequency and passes through its equilibrium position at
the same time. The important property of normal modes that
makes them useful in vibration is .the fact that, when they
exist, any possible tyvpe of vibration of a system can be
represented by the superposition of vibrations in each of
the normal modes and each normal mode can be treated inde=—
pendently as a system of one degree of frecdome It has
been shown by various writers (see, for example, refersnce
8, »p. 1D7-108) that normal modes will: certainly exist if
there is no damping and if the potential and the kinetic
energies are quadratic functions of the coordinates and
the velocities of the system, In the theory of vibrations
the amplitudes are usually assumed to be small enousgh that,
in the expressions for the energies, all dbut the quadratic
terms may be neglected. Even with damping, normal modes
will still exist under certain conditions. It can also be
shown that, when the damping is small, the theory of normal
modes always gives a good approximation to the actual vi-
brations.

When an external periodic force is applied to a struc-
ture, all the normal modes are excited to a greater or a
lesser extent. But when the amount of damping is small and
the freguency of the applied force is near to one of the
resonant frequencies of the structure, one of the normal



4 N.A.C.A, Technical Note No. 751

modes becomes predominant in conmparison with all of the-
others, Under this condition, the analysis for one degres
of frecdom will provide a good apvroximation for the re-
sponse curve in that particular range of frequencies. The
deviations of the actual response from the values appropri-
ate to one degree of freedom may be called the normal-mode
interference effect. Whenever the shapes of the deflec-—
‘tion curve for the wvarious modes are known, this interfer-
.ence oeffect can be evaluatod. 4 number of methods are dé-
gscribed for experimentally evaluating this effect. Simple
theoretical expressions for the exact response curves have
also been found for the cages of a uniform cantilever beam
in bending and in torsion. o ) T T

It is to be noted that measurements of the type .con-
sidered in this report yield tho total damping, including

internal damping, air damping, losses in the supports,
and whatever types of damping are preseunt,

SYMBOLS

m, wmass.
f(x);, restoring force.
k, syring constant of a vibrating system.
g(x), deviation of restoring force from Hooke's.law.
F, For» applied force’. instantaneous and ngimum value.
£, -time. ' -

x, dldplacement in system of one degfee ©vf freedom,
or position coordinatg_in;a'ﬁoqfihuoﬁs gstructure.

AW, }oss of encrgy or work done Dper cycle.
Aann’Oq=Dns constants.:
c, famping force per unit velocity.
"W, angular frequency.

We s - natural angular frequency with no damping, ./k/m.
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natural angular freqéency with ‘damping, w;; - A .
angular frequency of maximum response.

c/2m, Lo o .

period of free vibrations, 2mwiv, .

nondimensional damping parameter, c/mw,.

value of ¢ for critical damping, 2mub.

x .
=y log =2; ma; is the logarithmic decrement.
mn Xn .

constant.
damping coefficient used in reference 7.
spring constant of a vibrator.

radius of crank arm.

. amplitude corrected for effect of couvpling with

vibrator.

displacement function for a continuous structure.

gZeneralized coordinate.

normal function.  _ _

" kinetic .enerzy.

potential energy.

diesslpation function.

Cps coefficients of mass, damping, and stiffness.

generalized force.
interval of digtance along a beam.
denominator of . mth term in equation (36).

mass density.
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I volar moment of inertia of section.
J, torsion modulus of section,
G, shear modulus of material.
8(x), angular displacement.
E, Young's modulus.
I, moment of inertia of section.
A, area of section.

¢p, (2n - 1) o w/wn for large values of =n.

ANALYSIS

Equivalent Viscous Damping

The analyeis of viscous damping is often applied to
systems having a different physical law of damping. For-
tunately, this convenient »ut inexact analysls can give
useful information beécause certain approx1mations are Jus-
tified when the gmount of damping.is small. The basis of .
this method follows. In wviscous damping, the hysteresis
loop is an ellipse. Corresponding to any other type of
damping, an equivalent viscous damping coefficient can bve
defined such that the hystoresis ellipse will have the
seame amplitude and the same areas as the adtual loop. The
parameter characterizing this equlvalent ellipse can then
be used as a meagure of damping, .

Consider a typical elastic hysteresis loop (fig. 1).
This curve is seldom directly measured, but a typical shape
can be inferred for the purpose of this discussion. Now
the area of this loop is a measure of “the enersy d1331pat—
ed per cyvcle, that is, a measure of the damping. If the
amount of damping ig small, the loep must be narrow. From
Hooke's law, the mean slope should be anproxlmately con—
stant. The squation of motion can be written

mx + f(x) = F sin wt (1)

nx + g(x) + kx = F, sin wt

o]
f(x) = kx + g(x)



where kx 1s the elastic force corresponding to Hooke's
law and g(x) is an undetermined function to take account
of the damping.

The ensrgy dissipated per cycle is.

21 A0
AW = [kx + g(x)] %’1—;‘ dt (2)
YA . )

and, whatever the actual law of damping may be, the ampli-
tude of steady forced vibrations is determined by the con-
dition that the work donre per cycle by the external force
is equal to the dissipation of energy by the damping.

am/w 21/

' dx dx _ !
/ F 3% dt =f f{x) == dt = AW (3)

0 o)

Now the deflection will be very nearly a sine function of
the time but, for generality, a Fourler series will be as-—
sumed..

Let
. - .
x = L. Ap sin nwt + By cos nwt
n=1

The phase can be adausted arbitrarily to make By = 0. The
v91001ty is :

An nW cos nwht - By nw sin nwi

All of the coefficients except 4; will be small when
the amount of damping is small. Similarly, for a given am-
plitude and g given frequency, the function g(x) can be
expressed as a Fourier series,

g(x) = n§1 Cp sin nwt + Dy cos nwt

The elastic force . kx does not contribute to the damping
and may be omitted from the expression for AW.
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Then
2T /W
AW = ( ) _CES —
= glx a% 4t
0
amn/w -
- _
= /n T (Cp sin nwt + D, cos nwt)
¢ :
x I (nwA, cos nwt - nWB, sin nwt) db
n=1 )
2~
= n§1 nT (DnAn —- Cp3By) o
= 7 (DyA; + 2D3A5 - 2C; By .. ) (4)

A1l the cross products of sinés and cosineg and the
products Involving two different values of =»n vanish in
the integration. The only remaining terms are products of
each Fourier component of g(x) multiplied by the corte-
sponding Fourier component-of the velaqocity. Thus, if the
second harmonic and the higher terms in the Fourler series
for x and & are small quantities of the first order,
their contribution to the value of AW will involve only
small quantities of the second order, For the definition
of the equivalent viscous damping, these higher order terms
are neglected in comparison with the term in Aix.

Then
AW =17 Dy &
AW |
o= TR, (5)

Under this assumption, the loss of energy per cycle depends
only upon the Fourier component of~the restoring force in
phase with the veloeity. But it is just this componeni
that corresponds to the term for viscous damping. The
equivalent restoring force is '
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f(x) kA, sin wt + D, cos wt

cos wt (6)

i

AW
kA sig wt -+ .
This function gives a hysteresis loop in the form of an

ellipse. The coefficient of viscous damping, ¢, which
2ives the same energy loss per cycle is &iven by

dx
c iz = cwh1 cos wt
= éE— cos wt
- 'lT.A.l
Hence
c = _A_,W_a (7)
THUA |

Derivations of Formulas for One Dggree of Freedom

In the following analisis, 1t has been recognigzed that

the quantity o, = ~[E7i, the natural frequency without
damping, is not an observable dbut a conceptual quantity.
Actual measurements can yield only the natural frequency
with demping and the freguency of maximum response. Hence,
the equations for determining damping parameters should
contain only the observable frequencies and not the fre-
quency Wwg-

Ffree vibration.—~ The eagquation of motion of a vibrating

system with viscous damping will be taken in the form

mx + cx + kx = 0 (8)
The solution is
X = xoe— gsin wyt
where .
A= 5z
a 2



[
o

The damping will be expressed in terms of a nondimensional
prarameter defined by

c 2A
6 o —— =—UT- (9)
mWe o
This parameter is_simp;y_reléted_to the fraction of crit-—~
ical damping. The condition for critical damping is wy = 23
hence - :
= A = —gIT
®o = A = 37
e . _c .35
Cer 2nwg 2
The amplitude after n complete cycles of free vibration
is
nen
-nAT HHEY )
Xy, = Xg© . = Xge (10)
c 1 x ’
mly gt Xn
and since -
/ A2 N : 52 .
Wy = Wo 1- Wo? Wo 1 -3 o (11)
8 1 . X :
= —— 10§, =2 . (12}
Tn Xn
1 - S
4
Define - "
1 0
A, = - e}
17 mn e ¥
Then : - R
§ = 21 i -
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From this equation it is apparent that, when &6 1s small,
Szal

The quantity usually called the logarithmic decrement 1is
equal to ma,; in the present notation.

FPorced vibration vproduced by a periodic force of con-—
stant amplitude.~ In termsg of the notation of complex var-
iables, the equation of motion of foreced vibration produced
by a periodic force of constant amplitude is

nx + cx + kx = J:'r‘oei(‘Ut (13)

The solution for a steady state is obtalned by making the
substitution

X = xoeiwt
Then
¥o Fo
m m
Xg = = = ) (14)
(,UJoa-w)+i—9n%-U (W2 = W) + Luww,?d

or, for the absolute magnitude of X
Fo
m

x =
° 2 w2 g a g3
a
w 1 - —= + 8§ —3m

The frequency wp of the impressed force for which x4
is a2 maximum is given by

2
d f( 'wa> 2 wa] 2 wa> 5
— 1 - = + 8§ = - — (1 = + = -0
dw® L wo5 = 2 2 2

(15)

wa=w3<1~§3> (16)
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The amplitude

By use.of eguations (15) end (186),

o)
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at resonance is’
To
™
- _ -~ (17)
2 Wy 2\ wy®
Wo 1 - ——5) + 5 6
Wo Wo
Fo _
k .
6‘.‘
8 - —— -
A L 4
‘there is obtained
) (18)
= 2 (} . —_—t 18
= =)

where

| 2]

+ 1
2\2
(L. Wy
\ (g'.'a/
- -‘u———--—g.._..__——-———
’,ET__-_'I\"“ 1
X/

ro;ced v1brat10n nroduced by & force pronortlonal to

by a force Droportional to

2
mx + cx + kx = Mw® e

where M
tion is glven by

o
48]

1211

X, = —— e

ig a constant.

w? is
iwt

The amplitude

(19)

of steady vibra-

we
' (20)

Q r

The frequency Wy

. g . 2
v/ IS

ers - . -~
) 3
+ Neh UJ / (UJO
m

is 2 maximum is given by

Bix

2

e 2 2 2
- w )t ww,

of the impressed force for which x,4
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M .
dxg - o -
2 ERL 2
dw ~/ (W~ - W) + & wuwy,
- % ¥ w2 2(wy? - w? + 8 ub21
- =% =0

=
# b (21)
Wy = ———%
1 .o
2
The amplitude at resonance is
M
% wma m
Xy = : = (22)

2.8 —a = P . 2
/ (w,? ~wy )" + 8" wywpy Bv/l - %5

By use of equations (20) and (22), there is obtained

(23)

where
(—%—1
w

2
m _1)

Properties of Damping Coeffieient, g

Theodorsen and Garrick (reference 7) have used a com-
plex stiffness function to describe the phenomena of inter-
nal damping, The properties of this function are herein
developed. '

The equation of motion of a vibrating system can be
written in the form

-
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nx + xk (1 + 1g) = FoetWP (24)

The use of the imaginary term ig implies that the dis-
placement 1s a sine function of time and that there 1s a
component of force proportional to the amplitude and inde-
pendent of frequency but in phase with the velocity. The
golution of egquation (24) is

1wt
e

x = 5 - - (25)

1l - —@—E +-1ig
Wo

e

This equation agrees with Schlippe's analysis {(reference

) and is similar to the result just given for viscous
danmping except that the damping term 1s 1ig instead of
i(w/wy)8. Thug, the numerical value of & 1is nearly egual

to the value of- § aqobtained by measurements close to a
regsonant peak.

The fregquency of maximum response 1s obtained as be-
fore by differentiating x with respect to w®. The re-
sult for this case is

[¢4) = W -
m o}
Hencs -
X
. = k
o - 2
1 - —U-J";;' + iz
Wwm*
r _
k
X = e _ _
a
-2
< W
gB = = m " (26)
X\ . 1
=)

This equation showd that & is given by the same expres-
sion as the quantity a, of equation (18).
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Further Details of Practical Importancs

In the elsmentary analysis, the applied force is usu-
ally assumed to be independent of the amplitudes produced
in the vibrating system. ' In actual apparatus, however,
the motion of the point where the external force is applied
frequently affects the value of the fores, so that the ac-
tual force transmitted to the structure changes with the
amplitude of vidbration. When the force is produced by a
spring of stiffness X fastened to a crank of radius R
(see fig. 2(a)), the force on the structure is
- XK(x - R sin wt) and the equation of motion is:

mx + kx = - K(x - R sin Wwt) (27)
Then
1 -~w®m+ k e L
x KR sin Wt R sin wt
S I X
b X! R
. =2 .1 (28)
Xo ! Xq R :

Similarly, for a rotating mass fastened to the structure
(see fig. 2(b)), the squation of motion is:

nx +. kx = = M j: (x + R gin wt) (29)

The solution isg:

1 -mw?® + k © 1

— = —

X Mw® R sin wt R sin wt

i1 1
I, ~ %' T E
1 1 1
= "=t & (30)
The corrected amplitude, x5!, corresponds to the ampli-

tudes given by theoretical equations in other sections of
this report. Equations (28) and (30) thus provide a method
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of correcting the measured amplitudes for the effect of a
vivbrator having a small stroke. The natural frequencles
are changsd ta - - - . - - -

/ k + K
m
k
m + M

for the two tyves of vibrators shown in figure 2(a) and
2(p), respectively.

and

Derivation of Formulas for Continuous Structures

General case.— The general theory of vibration has
been presented By a number of anthors., (See, for example,
reference 8, chs. IV and V.) This theory deals with the
problem of finding the normal coordinntes of a systen,
that is, the coordinates in terms of which the squations
of motion have only one coordinate occcurring in sach egua—
tion. The existence of such coordinates for systems with
damping has been digcugsed by Lord Rayleigh, who shows
that these coordinates exist for certain distridbutions of
damping and that, in all cases of small damping, the errors
introduced by assuming normal modes are of the second order.

A Prief outline of the method of normal coordinates
is given. The application of this method to the determi-
nation of damping in each mode of a cantlilever bveam is then
discussed.

Suppose that the functions X,(x), <eiving the shape
of the deflection curve for each mode, are known. Then
the displacements corresponding to any motion of the system
can be sxpressed gs a summation of the displacements in
each normal mode

u(x) = E dn Xp(x) (31)

According to Lord Rayleigh (reference 8, pp. 130-131),
in damped systems for which normal modes exist, the kinet-
ic and the potential energy functions, T and V, and the
dissipation function, ¥, can bYe expressed as sumsg of
squares of generalized coordinates or velocities.
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Then

27T = alQla + aeQza + e.. + anqna R

2F

« 2 | * 2 2
bl q-l + baqg + 2 e ® + bné_n + * e ®

2V=c a + ¢ 2+ qo.+cnq_na+-.o

192 24z
The equations of motion will be obtained by the use of
Lazrange's equations.

4 (3T, BF , BV _ . (32)

at “aq, o4, 34,

nqn+b

29 ¥ Cnn T Qp (33)

a
where Qp 1s the generalized force corresponding to qp.
The form of Q, 1is found from the relation :

8W
Qn = Tag

where &8W is the work done on the system dy the external
force during a displacement 6&qg.

. For example, in the- case of a force F = 3oeiwt ap-
plied at the point =x = x,,
' iwt
8W = Qy 8qp = Féu = Foel X (x;) 8qy
Eencs o
Q = X, (x,) Foeth _ (34)

The solution of the equation .of motion is

Xy (xg) Foeiut

An
2 -
- an + iWby + cn

lwt
- Xn(xi) Fg,e (35)

2
anWen (F - i%? + 1 " 8n>
on on
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where
Wi = ®n
on &y
-
8, = _Dn
n - w
an YWon

The displacements are .then glven by

Xn(x) X, (x ) Ty elwt (36)

alx) = & X, = Z
(x) r %o “n n w
anp %n (L =~ -—2-- + i L-G;; 61’1)

In the summation, it is necessary to gum the real and the
imaginary vparts separately. If only réal quantities are
used, the eguations become

Qn = Xp(x,) Py sin wt
AQn = -A-n sin Wt + Bn cos wt
3
Xa(xy) Fo (1 - 27)
Ap = = - 8 S 2
2 (- ) (s J
&n Won ( - s - n)
L wd W n
w
=Xy (x;) Fo Gon 6n>
B, = - 20 =
an wf [(1 - ) + (2 5)]
n n Y- o Yn
L Wy Won
u{x) = 2 Ay Xp sin wt + By Xpn cas wh (37)

Equation (30) is the connaecting link between the analy-
gslis of vidbration in one degree of freedon ‘and in continuous
structures., Bach term of this eguastion has the same form
ag the solutlon for o system having one deg8ree of freedomn.
When a force is applied to a structure, all the mod e s &re
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d to.a greater or a lesser extent and the

e_ o
ind the amounts of damping associated with e
e are several ways of solving this problen.

For any case in which the normal functions are known,
the damping in different modeés can be separated by an in-
tegration. If both sides of equation (%6) are multiplied
by ZXm(x) and integrated over the length, then all but
one term in the summation will vanish.

u({x) = ¥ qn Xp
n

1 Al '
b/p Xpn(x) u(x) dx L/P Xp(x) £ an Xp(x) dx
n

o o
A
= th/ﬂlxmg(x) dx
o
_[lxﬁ(x) u(x) dx Xm(xl) F, g tW
A .
Qy = 7 _ = (38)

{ Xm?(x) dx ap Yom (? - —E— + i o 8m

The'quaﬁtity dny obtained by graphical or numerical inte-—

gration of the measured amplitudes wu(x) can then be used
as thouzh it were the amplitude in a system having only
one degree of fresdom., The process of evaluating this in-
tegral in practical cases consists in measuring the ampli-
tude at a number of points and evaluating the sum:

 Xp(xy) ulxg) Axy
an = g (39)
z_"_" Xm (xi) Axi
EN

In the present tests, the vrocedure was simplified
8till further. The disturbvance from two of the modes can
be eliminated by applying the force.at a node of one of
them and measuring amvlitudes at a node of the other, The
Justification of this method follows immediately from equa-
tion (356). For measurements in the range of frequencies
near to Wy, this equation can be written:
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alr.) = Xpea(xa) X (xy) Foe . Xm(Fa) X (x,) Fye
) Dy a D,
fwd
X 7 :
* Tnea(ze) Tmey(x2) Foe + small terms (40)

Dm+1

where D, 1is written for the denominator in the mth term.
If x, and xz are chosen such that

Xm_l(xl) = Xm+1(xa) = 0

then the amplitude is given by

X, (xp) X (x,) 7 _ot"" S
u(xp)=0+ ——— g : + 0¥ small terms (41)
a2 W w
an Won <l ~ e t i1 5m>
Ooll on

Another method of finding the damping is Dy evaluat-
ing the infinite series given by eguation (36} to find the
resultant response curve, A comparison of this exact
curve with the response_curve for one degreé of freedon
shows how to correct the asnalysis for one degres of frea-
dom to take gccgunt of all the disturbing modes. Expres-
sions for the sum of the infinite series (equation (36))
have been found for the cases of torsion and bending of a
cantilever beam with the vibdrator at the tip.

Torsion of g uniform beam.~ Consider a cantilever beam
excited in torsional vibrations by an oscillating torque
applied at the free end.

1 . l ~
=D/P $p I, 0% ax = E_Qnab/n ¥ p I, X (x) ax
C (o]
1

! o

- (42)

-
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-Hence

[ aXn 2
cn f 3 GJ (5—5> dx
o] . .

Suppose that the applied torque is supplied by a rotating
unbalanced mass at the tip of the beam. Then the torgue
is

P = Mw® sin wt
The generalized force is

Qn = X (1) Mw® sin wt (43)

. 2
Ln(x) Xn(L) Mw® sin wt

6(x) =% ap X =2 s- (44)
n n 2 jz ) - "
won'o g P Ip Xn (x) dx < - U_Jé._
oxn'

The normal functions are known for the case of constant IP’

X,(x) = sin (2n - 1) g %; n =1, 2, 3, ses (45)
G(L) =lf_ sin wt 1

pIp? n<wozn__ 1)

(=1

8(1) = M sin wt 5 1

_ — (46)
TPl Ip n!’(a‘n -~ 1)° w,® . lJ
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The sum of this series can be evaluated by the following
method. Using the relation {(raference 9)

(o]
tan x = - % = (47?)

—Co x-'-'(n-l_-%)‘ﬁ

there 1s obtained

. o 1 1
X an x = pa -
2 P I-1 (@-3% 7+
(2 - 3 X o X
- o
=z 2 _ o (48)
* (n - %) Ez - 1
Put - BX oW
™ Wy
Then
T ) TU . g L
Ty TR PG T T (en - 102 w0
wa
. M T, S W
0, (1) = o © tan 2. (49)
F=] P .L IP 4(‘Ul LU_-,_?-

In figure 3 the value of

has been plotted against w/wl fuvr the first two peaks.
In figure 45 the exact resvonse curve is compared with the
curve for one degres of freedom. N

Berding of a wuniform beam.- By a method gimilar to
that used for Torsion, the following equations are obtained.
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[A 2
fj” A% ax =z inaf
5 |

[o} . . o

=
n
o
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ng
B
o™
]
_J

L (50)

-~

4
I
Wl
=l
-
YR
H J‘”c
L K]
n
=9
: M
It .
siM
e}
Q
wf-
feef
[}
N

)
]
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e
oS
ba)
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[
o8
b

O o

Q
il

. AL a_2a
X s X
f 5 EBIL <-a'—"g dx
X
[e] R .

Suppose that the applied force is produced by a ro-
tating unbalanced masgs at the tip of the beam. Then

= Xn(L) Mw® sin wt

X, (x) X, (1) Mw? sin wt

u(x) = % q, X = 3 =3 (51)
n n
Won f % p 4 Xn (x) dx <? - —g
Yo
wlx) = M xn(x) sin wt (52)
. n pAL
SNCOFEIC Y
Put -
yo= 5 —t (53)
n 9119 - 1 - .
we _
and define a new function
- .
v! = T L : (54)
u=1 (2n - 1)  _ 4
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*® 1
= 2 - ) 2
n=1 l_(,?___..-'__-—)-—- - l] [_(_gn o L) - lJ
Lo P
=% z f 1 - L
[—£§E~:_ll_ ; fem - 1) .4
o= =

—
“n
[93]
~

]

v! %E (tan %? - tanh EE)

If @ is defined by (2n - 1) /9 = W,/W for large
values of =n, the function y' 1s practically identical
with the function y, except for the first two terms of
the series. 3By wuse of this function y' and suitable cor-
rections for the first two terms of the series, the re-
sponge curve has dbaeen calculated faor the first three bend—~
ing modes of a beam and is shown in figure 5. Figure 6
shows a comparison of these exsct resonance peaks with the
corresvonding curve for ones degree of freedom.

APPARATUS

The apparatus used for these tests was very simple.
The ‘applied force was oroduced in part of the tests by a
small rotating unbalanced masg made by tapping a screw in-
to the aside of-'a rotating shaft, fitted in light bearings
and clampsd to the gtructure that was being tested. The
shaft was turned dy a small electric motor fitted with &
flexible coupling and suitable gears; the frequencies were
measured by an electric tachometer. For the rest of the
tests, the rotating mass was replaced by & small crank
coupled to the structure by a rubber band,

The amplitudes were measursed by observing the magni-
fied image of the filament of a small »uld prcduced by a
lens of l/&—inch digmeter and 2%3/4~inch focal length held
on the structure by a small dbrass mounting.
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The models tested were_ the wings used in the flutter
investigation (reference 7) and were in the form of can-—
tilever beams 6 feet 9 inches long with symmetrical-
alrfoil cross sections. Model 1 was rectangular with 12-
inch chord and 1/2-inch maximum thickness. It was made of
duralumin with closely drilled 1/2-inch holes.and was cov—
ered by a 0.,006-inch sheet of duralumin., Models 24, 20,
%2, and 4 were made of s0lid duralumin with two rows of
chordwise slits to decrease the torsional stiffness. Mod-
els 6 and 7 were made by covering a balsa structure with
1/16-inch mahogany.

EXPERIMENTAL RESULTS

Three methods of measurlng damping were used in thesse
tests. The damping in the first bending mode of each
model was determined by measuring the rate of decay of
free vibration. For the higher modes, some of the tests
were made with the rotating-mass type and some with the
crank—-and~rubber-band type of widbrator. In order %o min-
imize the influence of normal modss other than the one
being investigated, the force was applied and the ampll-
tude was measured at the most suitadle positions. For ex-
ample, in.the measurement of the damping in the third
bending mode, the nearsst disturbing frequencies are the
torsion and the fourth bending. In this case, the force
was applied to the tip of the beam at the position of the
node in torsion and the amplitudes were measured at the
edge of the bean at the positlon of a node of the fourth
bending mode,

Figure 7 shows plots of the response curves of the
models tested. In these tests, it was thought unnecessary
to try to obtain the complete functional dependence of
damping on amplitude and other variadbles. Consequently,
the response curves were analyzed only to the extent of
finding a representative value of the damping parameter &.
It will be noted that the results for all models of a Ziven
type of construction gave values of &8 within a range of
about a factor of 2. In table I are givéen The numerical
results for &8. These values were computed from the data
of figure 7 by use of equations (12), (18), and (23). The
value of the amplitude at a frequency ratio of 1.1 was
taken for determining the best single representative wvalue
of &,
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CONCLUSIORNS

l., In the dstermination of the damping of structures
by means- of the shape of the responge curve obitalned by
applying an alternating load at ome point of the .structure,
the use of the analysis for one degreoe of freedom is jus-
tified when the followlng conditlions are met:

(a) The damplng ie small.

(b) The points of applying the f6TGé and measuring
the amplitudes are appropriate from consider=
ations of disturbing normal modes.

(c) Only amplitudes close to a resonant peak are
used to detarmine the nondimen91onal damping
narameter, S.

2. When the normal functions for a structure are .
known, the damping in the different modes can be geparate-—
ly determined from the measgured amplitudos at several
.points along the structurs. -

Z. The measured values of & for a homogeneous
structure such as a cantilever beam of duralumin are ap-
rroximately equal in the different modes of wvidbration.

Langley Memorial Aeronautical Laboratory,
Hational Advisory Committee for Aeronautics,
Langleyv Pield, Va., December 21, 13939.
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Values of the Damping Parameter, 8

" Mode
Model Bendling Torsion
1 2 . z 4 1
Duralumin’
1. skin 0.062 0.083 0.1130 - 0.087
Solid .
24 | durslumnin «D0EO 014 —— - . 0087
28 do. . D050 L 056 .1073 - — ‘018
3 do. . 0045 .0075 .0040 0,0047 -
4 __do. __.0089 .0080 0050 | ~.0053 . 0034
6 . Wood 020 | == .0174 . 030 .028
v do. .021 - —_— - .020
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Figs, 1,2
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Figure 1l,~ A typical slastic hysteresis loop.
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Figure 2.~ Simolc mechanical circuits to illustrate
the effect of a vibrator.
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(a)Model 2A; second bending (b)Model 2A;torsion mode; (c)Model 3; second bending mode;
mode; rotating-weight rotating-weight method. roteting-weight method.
method.
(d)Model 3; third bending (e)Model 3;fourth bending (f)Model 4; second bending mode;
mode; rotating-weight mode; rotating-weight rubber-band method.
method. method.

(g)Model 4; third bending (h)Model 4; fourth bending (i)Model 4; borsion mode;
mode; rubber-band method. mode; rubber-band method. rubber-band method.

Figure 7,a-i.,-Typical experimental response curves.



